Kernel-type estimator for the extreme value index of air temperature
نویسندگان
چکیده
منابع مشابه
A Pickands type estimator of the extreme value index
− One of the main goals of extreme value analysis is to estimate the probability of rare events given a sample from an unknown distribution. The upper tail behavior of this distribution is described by the extreme value index. We present a new estimator of the extreme value index adapted to any domain of attraction. Its construction is similar to the one of Pickands’ estimator. Its weak consist...
متن کاملA moment estimator for the conditional extreme-value index
In extreme value theory, the so-called extreme-value index is a parameter that controls the behavior of a distribution function in its right tail. Knowing this parameter is thus essential to solve many problems related to extreme events. In this paper, the estimation of the extreme-value index is considered in the presence of a random covariate, whether the conditional distribution of the varia...
متن کاملKernel-type Estimators for the Extreme Value Index by P. Groeneboom,
A large part of the theory of extreme value index estimation is developed for positive extreme value indices. The best-known estimator of a positive extreme value index is probably the Hill estimator. This estimator belongs to the category of moment estimators, but can also be interpreted as a quasimaximum likelihood estimator. It has been generalized to a kernel-type estimator, but this kernel...
متن کاملA Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data
Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...
متن کاملEstimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring
In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lietuvos matematikos rinkinys
سال: 2017
ISSN: 2335-898X,0132-2818
DOI: 10.15388/lmr.b.2017.05